xiaoylly

(HiERiR) ZHER

pe
gl

pe
gl

pe
gl

pe
gl

pe
gl

pe
gl

pe
gl

pe
gl

R
gl

R
gl

R
gl

R
gl

2.1-1
{Lh:
INSERTION-SORT(A)
1 forj< 2tolength[A]
do key < A[j]
Alnsert Afj] into the sorted sequence A[l..j-1]
iej-1
While | >0 and A[i] = key
do Ali+1] « A[i]
i<j-1
Ali+1] & key

0O =1 O W f D 2

3

31 59 | 26| 41 | 58

=

3141 |5

o
Pt
=y
1=
=

58

31|41 (592641 |58
T\ N\

-_—

26| 31 (41 | 59|41 |58

(N
</

20 31 |41 | 41|59 | 58

20 31 |41 | 41| 58 | 59

2.1-2

In line 5 of INSERTION-SORT alter Ali] = key to Ali] = key in order to sort the elements in
nonincreasing order.

INSERTION-SORT(A)
for j-—2 to length[A]
do key~—A[j]
/lInsert A[j] into the sorted sequence A[1..j-1]
i~j-1
while i=0 and A[i]<key
do A[i+1] « Ai]
i=i-1
Ali+1] < key

2.1-3

Algorithm 1 LINEAR-SEARCH(A V)

Input: A = (ay,az,...a,) and a value v.
Output: An index i such that v = Afi] or nil if v & A
fori+ 1tondo

if A[i] = v then

return i

end if
end for
return nil

As a loop invariant we say that none of the elements at index A[1,...,1— 1] are equal to v.
Clearly, all properties are fullfilled by this loop invariant.

2.1-4
A, BEIFIT A it dinfr 45 BINARY-ADD(A,B,C)
S KA, BEIE L R B ik 1 flag= 0

EFAEGE TR, SR L dbE R 2forj—1ton
oA &7 B AR R R Ch 3do

4 key-A[j]+B[j]+flag

key/fii 545 4, flagwyiify 3 Clll - keymod2

A ode P b1 Meson 6 if key>1
R, TEATAEn, 8. N
brESF, dfiAn, 8. 91T A h 7 fiag-1
8 if flag=1
9 Cn+1] ~— 1

2.2-1
n3 /1000 — 100n2 —100n 4+ 3 = @(n?).

2.2-2

Assume that FIND-MIN(A, 1, s) returns the index of the smallest element in A between indices r
and s. Clearly, this can be implemented in O(s —r] time if r = s.

Algorithm 2 SELECTION-SORTIA]
Input: A = (ay,az,...0,)
OQutput: sorted A.
fori+1ton—1do

j +— FIND-MIN[A,i,n]
Alj] & Alil
end for

As a loop invariant we choose that A[l,...,i— 1] are sorted and all other elements are greater
than these. We only need to iterate to n — 1 since according to the invariant the nth element will
then the largest.

The n calls of FIND-MIN gives the following bound on the time complexity:

B(Z])=emh
i=1

This holds for both the best- and worst-case running time.
2.2-3

Given that each element is equally likely to be the one searched for and the element searched for is
present in the array, a linear search will on the average have to search through half the elements.
This is because half the time the wanted element will be in the first half and half the time it will
be in the second half. Both the worst-case and average-case of LINEAR-SEARCH Is @(n],

2.2-4

Modify the algorithm so it tests whether the input satisfies some special-case con-
dition and, if 1t does, output a pre-computed answer. The best-case running time 1s
generally not a good measure of an algorithm.

2.3-1
?‘1“ |"‘..H'II"!J‘-':
3,9, 26, 38, 41, 49, 52, 57
3,26,41, 52 9, 38, 49, 57
3,41 26, 52 38, 57 9,49
3 41 52 26 38 57 9 49

2.3-2

void Merge(int *A,int p,int g,int r)

{

TTREY R e >3 A 2000 T il) A 4
int n1=g-p+1;

int n2=r-q;

int *L=new int[n1];

int *R=new int[n2];

for (int i=0;i<nl;i++)

{

L[I]=A[p+i-1];

}
for(int j=0;j<n2;j++)
{
ROI=ALa+T;
}
int i=0;
int j=0;
int k=p-1;
while((i<=n1-1)&&(j<=n2-1))
{
if(L[i]<=R[i])
{
ALK]=L[i];
i++;
}
else
{
ALKI=RIjI;
j+
}
k++;
}
while(i<=n1-1)
{
ALK]=LI];
i++;
k++;
}
while(j<=n2-1)
{
ALKI=RIT;
jt;
k++;
}
delete[]L;
delete [IR;

¥
2.3-3

BB
S HFEAFAF (base case):
M n=2 B, T (2) =21g2=2. FFoH&If.

R

2 n=2' I, T (29 =2"1g2" T

W2,

4 n=2" W, T 27 =272 /2)+ 27
=2T (2% +2™
= 2(2"Ig2t)+2™
— 2t+1|gzt+1

Fiv L, Ak !

2.3-4

Since 1t takes ©(n) time 1 the worst case to insert A[n] nto the sorted array
A[l..n — 1], we get the recurrence

©(1) ifn=1.

Tm= {rm —H+0m ifn=1.

The solution to this recurrence 1s T(n) = @ (#7).
2.3-5
grth— AN RRE. BRI ALEYE 1T I E) A (lg n).
BINARY-SEARCH(A, v, p, 1)
ifp = randv = A[p]then
return nil
end if|n/2|
j<ALl (r-p)/2]]
if v=A[j] then
return j
else
if v<A[j] then
return BINARY-SEARCH(A; v; p; j)
else
return BINARY-SEARCH(A; v; j; r)
endif
end if

2.3-6

:4%

il A HER B Bk ok — o B R S

INSERTION-SORT(A)

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
fis
il

forj = 2tolength[a]
do key = alj]
Avinsert a[j] into the sorted sequence a[l..j-1]
high < j-1
low = 1
while low < high
mid = { low + high) / 2
If key == A[mid] then
break
if key < A[mid] then
high =— mid-1
if key = Almid] then
Low = mid+1
fori = midtoj—1
Afli+1] = a[i]
Almid] — key
RUEBLR, afriR) E 2R nign, {HIE AN A B SR] S A E R .
SR ZEITE A RESE A o(nlg n). (HEHEF PR HERMEIE SR, W dE)

2.3-7

Give a ©[nlgn) time algorithm for determining if there exist two elements in an set $ whose sum

is

exactly some value x.

Al

gorithm 4 CHECKSUMS[A, x)

Input: An array A and a value x.
Output: A boolean value indicating if there is two elements in A whose sum is x.
A SORT[A]
n « lengthlA]
fori+ ton do

if Afi] = 0 and BINARY-SEARCH(A, Ali] —x,1,n] then

return true

end if
end for
return false

Clearly, this algorithm does the job. (It is assumed that nil cannot be true in the if-statement.)

HIE
3.1-1

FE2R f(n)Al g(n) ik ilnF oo e 3, PrUGHREE e 3 7778 NN (873 29 n>N, I, f(n)=0,
B, 25 n> NI, g(n) =0, 87 L, FATHL No=max{Ng, N}, LI, 25 n>Ng I, [f(n)=0, g(n) =0.
FEEAI G=1/2, G=1, 14 f(n)g(n)BIdEAIELRAE, 25 n>No I, :

T LB < mentf(w), g} = () + ()

JIEL, ATHIE!
3.1-2

To show that (n + a)” = O(n”). we want to find constants ¢, ¢z, ng = 0 such that
O<en®<m+a)’ <cnPforalln = n,.

Note that
n+a = n+lal
= n when |a| = n .
and
n+a = n-—lal
> =n when |a| = %n

Thus, whenn = 2 |al|.

O==n=n+a=2n.

[] =

Since b = 0, the inequality still holds when all parts are raised to the power b:

1 \?
0= (?n) = (n -I—afllb = {Zn}EJ .

1\?
0= (?) n? < m+a)k <2,

Thus, ¢; = (1/2)°, e; = 2% and ny = 2 |a| satisfy the definition.
3.1-3

Let the runmng time be T(n). T(n) = O(n?) means that T(n) = fin) for some
function f(n) in the set O(n?). This statement holds for any runnmg time T (n),
since the function g(n) = 0 for all n 1s in O(»°), and running times are always
nonnegative. Thus, the statement tells us nothing about the running time.

3.1-4

1 =0(2% B 2 =2x2P<ox 2, FLLHLSE
22" =0(2") FEr. FIRGEZ: WA 27 =0(2" o, BIEE LFHER: 2" <", dk®
B nslge AE ! W TAEERE n AR, BAc 2 —MHE.

3.1-5
B 7E s B f(n)= ©(g(n))HEH! fin)= O(g(n)) EL f(n)= Q (g(n)
R4 © = 3% HIETE NoCo,, 1H1T: 2 n>No I : Cpgln) < f(n) < ¢, g(n) 7FH4E 0, #l Q
£ 3A f(n)= 0lg(n)) H fin)=Q (g(n)).
EUF LB, B ER f(n)= Olg(n)) H. f{n)= Q (g(n))#EH f(n)=0(g(n))
R 0, Mo ENLH: 778 Ny, G £13: 2 n> NI Hiln) < Cig(n) EFEHL, F77E Na, Go
f#13: 2 n> N, I HCyg(n) < f(n), MEHF, FHL Np=max(Ny, No), WA TR FLRAT: 2 n> N
IHH: Cygln) < f(n) < C gm). Bl f(n)=0(g(n)).ATLL, FFE!

3.1-6
HEX AU, @0SEnmsEt—reaE g LR T R, 0 2SS0 — e fEnE LR,
m QEsHEnr T A,

3.1-7
Solution: Let fEo (g(n))n w(g(n)). That means f= o (g(n))= w(g(n)). By the definition of o, we have

lim (f(n)/g(n)) = 0

But the definition ofw, we have

lim (f(n) /g(n)) = oo

Because of 05 ==, we have a ohvious contradiction.

3.1-8

R2(gin,m))={f(n,m) : there exist positive constants ¢, 1y, and mg
such that 0 < cg(n,m) =< f(n,m)
forall n = ng and m = mg} .

®ig(n.m)) ={f(n,m) : there exist positive constants ¢. ¢;, Mg, and my
such that 0 < ¢1g(n.m) = f(n.m) = c,g(n.m)
forall n = ng and m = mg} .

3.2-1
S AHl, En, =n,.
MBEfnt=fln,), gnl<gln,) finl)<find), gnli<g(na).

[fln)+gin,)]-[fin,)tz(n,)]
=f(n,J-fn,)+g(n,J-g(n,)=0

£ (n)+g (n) ERREIEH, ER--2laEE.
3.2-2

logy, a*logpn =logy nelogya commutativity of »

logy, A02h 1 =log, n102h d (logx)y =logx" (both sides)
A°%h 1 _ logpa AO8x Yy (both sides)
3.2-3

Yoo 0,3 » 0, FFAETEN aza,, B 0=cl <nl, Bal= w2

o= 0,3 > 0, FFHETEN e zn, B0zalzcen®, ®anl=olx)

3.2-4

; m) m ‘m \m
|.LI.|J f_ m ! = ml R E_'m ~ m ' e:m
|_\ é‘ A % E 4
= (ﬁf{f‘.}m — e.l‘?l':]].'l m+1) - H]u m+1 - n].u'.: "

S0 (lgﬂ}!f& not polvnomially bounded.
o
[lglgn |=m, ml<m"<(2")"=2" <2°
yr
andlglgn=m—-1, n=2

[lglgﬂ!-:: 2" <n. So flglgi':—ll is polynomially bounded.

3.2-5
IEEPN
3.2-6
A AL Sk
3.2-7

B AR B

FA4E
41-1
FoHGE ERCE R, XA LA, PrLlIRATER 515,
Ei5%: T(n)<clg(-b).W[n/2|p%r, #m, FAIH:
T(n)=c lg([n/2]-b) + 1
=clg(n/2-b+1)+1
—c g2 4
=clem-b+2)-clg2+1
=clgin -b)
BE—PAETHLHE, bz 2021
Frik, f3k!
4.1-2
n=1I, Tn)=1,T(n)zcnlgn=¢c x 1 x lg1=0
1% T(n)2cnlgn & nf2 BT
T(n) =2 2([cn/2] lg([n/2])) + nzcnlg(n/2) + n
=chlgn—-cnlg2+n=cnlgn-cnlg2+n
=cnlgn—-cn+n
>cnlgn(Mc<1)
g ERTd, BEECE] AT 18 ¢ #3 Tn)zenlgn, W T(n)= Q(n Ign)
3 T(n)=0(nlgn) ,BTLL T(n)=0(nlg n)
4.1-3

T(n)=cnlgn+n
4.1-4

SLukO(mlgn), HEUET(m) < cnlgn
B T(n/2) < c(n/ 2)1g(n/ 2)RE L,
T (=T n/2N+T(n/2)+00mn)
<cn/2Plg(n/ 2D +e(n/2 g n/2)+00)

" n+l, a+l n,o.n
_C_E lg{—2 }+czlg{2)+®{n)

n+l, n+l b

c——lg(—)+ CEIEEZ—I} +O(n) Zcnlgn

"
<

n+l. n+l

n._m
=t c?lg[T)+cElg{E}+E}{n}—cn lgn=10

2n+1

ﬁc§1g{1+l}+§1g{n +1)— c+O(m <0
L n

lg(l+ D)0, Hn 21, Hled+ D) <1
Fl H

c+0(n) 5%1g(}1+1}+{3{n)—”:1

.

n+1

c

oLy Stggnany -
2 no 2

=§{21g{n+1}—}1—E}+§[4B(1)—c}
Bnz3,A21gn+1)-n-220, Hlecz401), HF401)-c=0
o on+l, a+l m,oH -
. 'CTIE{T}_MEIE{E) +@(m Zcnlgn

AT (n) < cnlgn

FHIEQ(rlgn), BIEET(n) 2 enlgn
WT2) = c(n/ D lgln/ 2k T,
MT) =T n/2P+T(n/2p+0(n)
> cr]_ n/ 2-|} lg{|_ ni2]+ c{|_n EJ} lg{]_ il EJ) +0O(n)

n-l 15(”7‘1) +O0)

2

M, 0
e —lol—
> 2lg(2j+f

i, N n—1, .n—1
c—lo(—)+e—lgi—)+ B(n) =z cnlzn
Zgiz} 25(2} (n) g

n—1

2

= c;lg(gjwf lg{HT_l)HE){n}—cnlgnEﬂ

2n—1

= cilg(l—l}—ilg{n—l}— c+0On)20
2 n 2

le(l— 1) RS, Mn>2, Ale-1) > -1
7 1

n—1 in—-1
2 2

c

- Mea-Yy—Cign-1)- c+®m 200 -Slgh-1)—
2 n 2 2

& L

=§(H+1—lg{n—l}}+{@{1)—Ec}r:r
finz3 finsl-lgln-1)20, Hic= %6(1), HO1)-2c20

cglg{gjw CHT_llg{nT_l}+G(n] =cnlgn

MT(n)zcnlgn
4.1-5

FEAE: FF7E 3N Co 78 nsNGH] T(n) <Conlgn.

Fit: T([n/2]+ 17)=G ([n/2]+ 17)Ig(|n/2]+ 17)

FAIA -

T(n) <2C([n/2]+ 17)lg(|n/2]+ 17)+n
=2C(n/2+ 17)lg(n/2+ 17)+n
=Co(n+34)[lg(n+34)-1]+n
=Cgnlg(n+34)-Con+34C,lg(n+34)-34C,+n ===+ (*1)
AT Co=2
MIF(*1) =Conlg(n+34)+34Colg(n+34)-n-34C,
< nlg(n+34)+34C,lg(n+34)-n
=Cgnlgn+ Conlg(n+34) —Gonlgn + 34Clg(n+34) —n ==eee- (*2)
FTFRATA TAE HETE T NG, Co=2 {73 MneNgith, &
Conlg(n+34) —Cgnlgn + 34Clg(n+34) —n=0
I (*2)<=Conlgn CERFRAIEAF B 458D
Conlg(n+34) —Cynlgn + 34C;lg(n+34) —n
=Cgn(lg(n+34)-lgn)+34 Clg(n+34)-n
=Cgn(34In2/€) +34C,lg(n+34)-n (n=¢t=34+n)
=34CnIn2 /(34+n)+34Clg(n+34)-n
I LR B Co=3, No=100, B 0] {#f 24n>Nltt,
Conlg(n+34) —Cynlgn + 34C,lg(n+34) —n =0
Fr L, Ak
4.1-6
T(n)=2T(Vn)+1
4 m=lgn, W7 n=2mn=2m/2, MR LR T(2m)=2T(2m/2)+1, %4 S(m)=T(2=), W
S(m)=25(m/2)+1 . F i H# 2 E ik el 13 . S(m)=0(m), F F FALC ## 0] 73 .
T(n)=T(2™)=5(m)=0(m)=0(Ign)
4.2-1

Determine an upper bound on T(n) = 3T([n/2]] + n using a recursion tree. We have that each
node of depth i is bounded by n/2" and therefore the contribution of each level is at most (3/2)'n.
The last level of depth Ign contributes @(32™) = ©(n'23). Summing up we obtain:

T(n) = 3T([n/2)) +n
<n+(3/2m4+(3/2Pn +- -+ (3/2)ETh + O3
lgn—1

=n Y (3/2)' +O(n"?)
i=0
(3/2)m —1 s
=n-————+0(n*)
32— em

=2(n(3/2)E™ —n)+O(ne3)
2gn

—n —2n+O(n¥d

2gn
—2.3E™ _on 4 @mled)
—miE*_n +OmeEd

—O(nled)

We can prove this by substitution by assumming that T(|n/2|) < c|n/2/%3 —¢|n/2|. We
obtain:

Tin) =3T([n/2]) +n

< 3c|n/2)®3 —¢c[n/2) +n

3cn'e? cn N
S Ts 7 "
cn
<en®d o —4n
2
g3
< cn'®

Where the last inequality holds for ¢ = 2.

4.2-2
The shortest path from the root to a leaf i the recursion tree 1sn — (1/3n —
(1/3°n — --- — 1. Since (1/3)*n = 1 when k = logyn. the height of the

part of the tree 1 which every node has two cluldren 1s log; n. Since the values at
each of these levels of the tree add up to i, the solution to the recurrence 1s at least
nlog;n = Q(nlgn).
4.2-3
Draw the recursion tree of T(n) = 4T(|n/2]|] 4+ cn. The height of the tree is Ign, the out degree

of each node will be 4 and the contribution of the ith level will be 4! |cn/2'|. The last level
contributes 487@(1) = @(n?). Hence we have a bound on the sum given by:

Tin) =4T(|n/2]) +en

lgn—1
= Z 4'. |en/2Y +8(n?)
i—0
len—1
<) 4en/2t+OmY)
i=0
len—1
=cn Z 2V 4 0Mm?) +0n?)
i=0
2n 2
—CTl'ﬁ‘l‘o[ﬁ.)
=8(n?)

Using the substitution method we can verify this bound. Assume the following clever induction
hypothesis. Let T([n/2]] < ¢|n/2|? —c|[n/2|. We have:

Tn}=4Ti|n/2])+cn
< 4c[n/2)* —c|n/2])+en
< 4e(n/2)* —den/2+cn
=cn? —2en+en

=cn? —cn

4.2-4
@ (n)

4.2-5
Tmy=T(n)+ Tl —awm)+n

We saw the solution to the recurrence T(n) = T(n/3) + T(2n/3) + cn in the text.
This recurrence can be similarly solved.

Without loss of generality, leta = 1 —w.sothat() <= l—a = 1/2and 1/2 = o = 1.

A /m\ pmm———— gnn—n—0"w3/e e
Coelt C‘{l —{I‘]-}’E LTI TTTTTTTNY DT ORNT v T N
logl_ﬁ_l_mﬂ / \ / \ loglmn
ca'n ca(l—an co(l —a)n (1 — o) n s cn
']

Total: O(nlgn)

The recursion tree 1s full for log, ,y_,, 7 levels, each contributing cn, so we guess
§2(nlogy _gyn) = S(nlgn). It has log; ,, n levels, each contributing = cn, so
we guess O(nlog, . n) = O(nlgn).

Now we show that T(n) = ©(nlgn) by substitution. To prove the upper bound.
we need to show that T(n) =< dnlgn for a smtable constant d = 0.

Tiny = T(an)+T((l —a)n)+cn

donlg(aen) +d(l —enle((l —a)n) + cn

donlga +danlgn +d(l —amlg(l —a)+d(l —a)nlegn 4 cn

= dnlgn+dnlalga + (1 —a)lg(l —a)) +cn

< dnlgn,

ifdn{olga + (1 —a)lg(l —w)) 4+ cen = 0. This condition 15 equivalent to

[

dielga + (1 —a)lg(l —a)) = —c.

Simnce 1/2 =@ < land0 < 1 —o = 1/2, we have thatlg o < O and Ig(l —ar) = 0.
Thus, e lge + (1 —w)lg(l —) = 0, so that when we multiply both sides of the
mequality by this factor. we need to reverse the inequality:
d > —¢

Tolga+ (1 —e)le(l —a)
or

c

= .
T —alpa+ —(l—a)lg(l —w)

The fraction on the right-hand side 1s a positive constant, and so 1t suffices to pick
any value of d that 1s greater than or equal to thus fraction.

To prove the lower bound, we need to show that T(n) = dnlgn for a smtable
constant d = (. We can use the same proof as for the upper bound, substututing =
for <, and we get the requuirement that

0<d=< <

—aloga — (1 —a)lg(l —a)
Therefore, T(n) = G(nlgn).
4.3-1
a. Tm)=4T@2)+n. FX a=0(m*"%) , H—FEL. Frilf Th) = o),
b, T(n)=4T(n/2) +n*. B4 n*= 0m®) . B lfl-ﬁ' T(n) =@(n° lgn).
c. Tm)=4Tw/2)+ n®. FEH n® = ™) B =/F 5, BUE To) = em®).

4.3-2

g (FEELER, AfkER 4w mra fRAng) A 3w BRI AIE SE A DR E Y E
T(n)=@(n®), FHA4A0418 a BB

a<16 I, T(n)=0(n") I, AthHE A HiR

a=16 I}, T'(n)=0(n’lgn) LI, AHLE: A Hik

a>16 I, T'(n)= @(n'8va) i, 5 AL A B, WFHEgva<7, hik, a<49,fiLh, a
B o K HEEL R 48

4.3-3

filf: n87=1. 5 o(1)Fkr, AL o(lgn). (EHEEAX)
4.3-4

ANREIE Iy

4.3-5

Tin) = Tin/2) + ni(sin(n - 7/2) + 2)

We are in Case 3 of the Master Theorem, and the regtlarity condition is:
n/2) (sin(n/2 - w/2) + 2) = ¢ nisinln - @/2) + 2)
sm(n/2-m/2)+2

c = (1/2) —— .
smin—7/2)+2

To see 1t 13 impossible to satisfy this for all large n, choose:
n==2mnk

where k is odd. |/ relies on k being odd

Then sin(n/? — a/2) = sin(ak — 7©/2) = sini{a/2) =1

sinln — #/2) = s5in(2 nk - /2) = sin(-n/2) = -

And we get
o 1+ 2
c = (1/2)
—-1+2
¢ = 3/2

Thus, we can't chooze ¢ ¢ 1 to zatisfy the condition.

5.1-1
ISP P o i S SUR -
5.2-1

HofAEE T OB IR CLEHLR A B0, FrLAAT § St LU AL B .
IXLERY i A EE A A AR RS AT RE MR H AR T . VS 0 VI S 1 3] -1 AR
PHE RS -1/, PRl LD 1/ B R

FT UL IE AT RE N HEEE 2. 1%1/2%2/3%3 /4%« e-*n-1/n=1/n

M B R n By 1%1/2%1/3% - -*1/n=1/nl.

A n A ABERVHE I, AR AT HE, A o FRedEE, o ERA) T E SR
LR b AR, Ha n-1 AT, A1) WL, BrLl ARk E
HMin-1)1/n! 13 1/n.
M RE] n VR A R A M e B A SR T R HE R, X RS S TR nl G
B 1%, Brelg inl

5.2-2

We make three observations:

1. Candidate 1 1s always hired.
2. The best candidate, 1.2, the one whose rank 1s n, 15 always lured.
3. If the best candidate 1s candidate 1. then that 1s the only candidate hired.

Therefore. in order for HIRE-ASSISTANT to hire exactly twice. candidate 1 must
have rank i = n — | and all candidates whose ranks are 7+ 1,71 4+2,n— 1 must
be mterviewed after the candidate whose rank 1s n. (When i = n — 1, this second
condition vacuously holds.)

Let E; be the event in which candidate 1 has rank i; clearly, Pr{E;} = 1/n for any
oiven value of 7.

Letting j denote the position 1n the mterview order of the best candidate, let F be
the event in which candidates 2. 3. ..., j — 1 have ranks strictly less than the rank
of candidate 1. Given that event E; has occurred, event F occurs when the best

candidate 15 the first one interviewed out of the n — i candidates whose ranks are
i+ Li+2,....n Thus, Pr{F | E;} =1/(n —1).

Our final event 1s A, which occurs when HIRE-ASSISTANT hires exactly twice.
Noting that the events E;, E,, ..., E, are disjomnt, we have

A = FH{EIUEEU"'UEH_]_}
= (FNEpW(FNE)H)U---U(FMNE;_1).
and

n—1

Pr{A} = ZPI{FF‘IE,} .

By equation (C.14).
PI'{FﬂEr} = PT{FlEr}PT{Er}

. 1 1
T on—i n’
and so
n—1 1 1
Pr{A} = - —
(4 ; n—1i n
1 n—1 1
- ; ; n—i
_ 1 (1 N 1 N N |
" n\n—-1 n-=2 l)
1
= —-Hp1.
i
where H,_; 1s the nth harmonic number.
5.2-3

BT Elx)=1/6*(1+2+3+4+5+6) =7/2
M2 n OB S AR B EE

n

2%

i=1

E[X] = E

5.2-4
Let X;=1{The event that people get the proper hat}

Then 1{A} is the indicator random variable.
Make X=X+Xo+...+X,

Bl =E[) x]=) Elxli=12..n

E[X]=1/n
Thus E[X]=nx1/n=1,the average number is 1.

5.2-5

=n x 7/2 = Tn/2

Let X;; be an mdicator random variable for the event where the pair A[7], A[]]
for 1 = j 1s mverted, 1e., A[li] = A[j]. More precisely. we define Xj; =
I{A[[]] = A[j]} for 1 =1 < j = n. We have Pr{X;; =1} = 1/2, because
given two distinet random numbers, the probability that the first 1s bigger than the
second 13 1/2. By Lemma 5.1, E[X;;] = 1/2.

Let X be the the random variable denoting the total number of inverted pairs in the
array. so that

n—1 n
X=% > Xj.

i=1 j=i+1
We want the expected number of inverted pairs, so we take the expectation of both
sides of the above equation to obtain

E[X]:E{E i X,-J,} .

i=l1 j=r+1

We use linearity of expectation to get

n—1 n
E[X] = E|: Z XI..I:|
1=l j=i+l

n—1

= Y Y EwX,]

=1 j=i+l

n—1 n
- S

i=1 _,f=f-|—1

ny 1
- (1)?
nin—1)

2
nin—1)

4
Thus the expected number of inverted pairs 1s nin — 1)/4.

5.3-1

FEANDOMIZE-IN-PLACE(A)
n < length[A]
swap A[l] <= A[RANDOM(], n)]
fori «— 2ton
do swap A[i] < A[RANDOM(i, n)]

The loop invariant becomes

Loop invariant: Just prior to the iteration of the for loop for each value of
i =2,...,n, foreach possible (i —1)-permutation, the subarray A[l..i—1]

contains this (i — 1)-permutation with probability (n — i + 1)!/n!.
The mamtenance and ternunation parts remain the same. The imitialization part
1s for the subarray A[l..1]. which contains any l-permutation with probability
n—Ll/n!'=1/n.

5.3-2

Although PERMUTE-WITHOUT-IDENTITY will not produce the identity permuta-
tion, there are other permutations that it fails to produce. For example, consider
its operation when n = 3, when 1t should be able to produce the n! — 1 = 5 non-
identity permutations. The for loop iterates fori = l andi = 2. Wheni = 1, the
call to RANDOM returns one of two possible values (erther 2 or 3). and wheni = 2.
the call to RANDOM returns just one value (3). Thus. there are only 2 - 1 = 2 pos-
sible permutations that PERMUTE-WITHOUT-IDENTITY can produce, rather than
the 5 that are required.

5.3-3

The PERMUTE-WITH-ALL procedure does not produce a umform random per-
mutation. Consider the permutations it produces when #n = 3. There are 3 calls
to RANDOM. each of which returns one of 3 values, and so there are 27 possible
outcomes of calling PERMUTE-WITH-ALL. Since there are 3! = 0 permutations.
if PERMUTE-WITH-ALL did produce a umform random permutation. then each
permutation would occur 1/6 of the time. That would mean that each permutation
would have to occur an integer number m times, where m /27 = 1/6. No integer m
satisfies thus condition.

In fact, if we were to work out the possible permutations of (1, 2, 3} and how often
they occur with PERMUTE-WITH-ALL, we would get the following probabilities:

permutation probability

.23 1777
(1,3,2) 5/27
2,1,3) 5/27
2,3, 1) 5/27
3,1,2 4/27
(3,2, 1) 4/27

5.3-4

PERMUTE-BY-CYCLIC chooses offset as a random integer in the range 1 =
offset = n, and then 1t performs a cyclic rotation of the array. That 1s.
B[((i 4+ offset—1) mod n) + 1] «— A[i] fori = 1,2,..., n. (The subtraction
and addition of 1 in the index calculation 1s due to the l-origin indexing. If we

had used 0-origin indexing instead, the index caleulation would have simplied to
B[(i + offset) mod n] < A[i]fori =0,1,..., n—1)

Thus, once offsef 15 determuned, so 1s the entire permutation. Since each value of
offset occurs with probability 1/n, each element A[7i] has a probability of ending
up in position B[j] with probability 1/n.

This procedure does not produce a uniform random permutation, however, since
it can produce only n different permutations. Thus, n permutations occur with
probability 1/n, and the remaming n! — n permutations occur with probability 0.

5.3-5

Pm=n, LEHNEHETINEF ",
HEHREENE Pimn)=m*(m-0% *m—n+1),
ek, BRA TTREWE—ERE N Pin,n)i w

BHIE P, s) (ot 211/ m

BT P, n)f o 2 [(m—n) | m]*

T [(m—n)im] 21-1/ 2 BIE

L m=n®, LRSI EA M,
HAARELZNH P(mMn)=m*(m-D*..*(m-n+1),
BTLl, B oo s mME— %0 P(m,n)/m"
ZHEP(m,n)/m" >1-1/n
HT P(m,n)/m" >[(m—-n)/m]"

WFFE: [(m=n)/m]" >1-1/n SiF
5.3-6

H6HE

6.1-1

There is a most 2"t1 — 1 vertices in a complete binary tree of height h. Since the lower level need
not be filled we may only have 2™ vertices.

6.1-2

Since the height of an n-element heap must satisfy that 2" < n < 2" —1 < 2", we have
h<lgn <h+1. hisan integer soh=[lgn].

6.1-3

The max-heap property insures that the largest element in a subtree of a heap is at the root of the
subtree.

6.1-4

The smallest element in a max-heap is always at a leaf of the tree assuming that all elements are
distinct.

6.1-5
AR R

6.1-6
No, the sequence (23,17,14,6,13,10,1,5,7,12) is not a max-heap.

6.1-7
tRIE e — SRR AT LA 2

6.2-1
LK 6-2
6.2-2

&% MaX-HEAPIFY A[4&
6.2-3

AIE
6.2-4

TR EE

6.2-5
XA T AR s EAREAS RO IS) S
6.2-6
Setting the root to 0 and all other nodes to 1, will cause the 0 to propagate to bottom of the

tree using at least lgn operations each costing O(1). Hence we have a Q(lgn) lower bound for
MAX-HEAPIFY.

6.3-1

LK 6-3
6.3-2

AT RIEEAE MAX-HEAPIF Y 4, DAT, LA LEFT(D#1 RIGHT(DAREI B _XREhER
FHE.

6.3-3

Let H be the height of the heap.

Two subtleties to beware of:

» Be careful not to confuse the height of a node (longest distance from a leaf)
with its depth (distance from the root).

» If the heap 1s not a complete binary tree (bottom level 1s not full). then the nodes
at a given level (depth) don't all have the same height. For example. although all
nodes at depth H have height 0, nodes at depth H — 1 can have either height 0
or height 1.

For a complete binary tree, it's easy to show that there are [n/2"+!] nodes of
height . But the proof for an incomplete tree is tricky and 1s not dertved from the
proof for a complete tree.

Proof By mnduction on h.
Basis: Show that 1t’s true for & = 0 (i.e.. that # of leaves < [n/2"+] = [n/27).
In fact, we'll show that the # of leaves = [n/2].

The tree leaves (nodes at height 0) are at depths H and H — 1. They consist of

» all nodes at depth H. and
+ the nodes at depth H — 1 that are not parents of depth-H nodes.

Let x be the number of nodes at depth H —that 1s, the number of nodes 1n the
bottom (possibly mcomplete) level.

Note that n — x 1s odd, because the n — x nodes above the bottom level form a
complete bmary tree. and a complete binary tree has an odd number of nodes (1
less than a power of 2). Thus 1f n 1s odd. x 1s even, and if n 1s even, x 15 odd.

To prove the base case, we must consider separately the case mn which n 1s even
(x 15 odd) and the case in which » 1s odd (x 15 even). Here are two ways to do
this: The first requires more cleverness, and the second requires more algebraic
manipulation.

1. First method of proving the base case:

* If m 1s odd, then x 1s even, so all nodes have siblings—i.e., all internal
nodes have 2 children. Thus (see Exercise B 5-3). # of internal nodes =
of leaves — 1.

S0, n = # of nodes = # of leaves 4+ # of internal nodes = 2 - # of leaves — 1.

Thus, # of leaves = (n+ 1)/2 = [n/2]. (The latter equality holds because n
15 odd.)

« If n 15 even, then x 1s odd, and some leaf doesn’'t have a sibling. If we gave
it a sibling. we would have n 4+ 1 nodes, where n + 1 1s odd. so the case
we analyzed above would apply. Observe that we would also increase the
number of leaves by 1. since we added a node to a parent that already had
a child. By the odd-node case above, #ofleaves + 1 = [(n+ 1)/2] =
[n/2] 4 1. (The latter equality holds because n 1s even.)

In either case, # of leaves = [n/2].
N

2. Second method of proving the base case:

Note that at any depth d < H there are 2 nodes, because all such tree levels
are complete.

» If x 1s even, there are x/2 nodes at depth H — 1 that are parents of depth H

nodes, hence 2%~ —x /2 nodes at depth H —1 that are not parents of depth-H
nodes. Thus.
total # of height-0 nodes = x + -1 x/2
= 2814 x/2
= 27+ x))2
[2% +x - 1)/2] (because x 1s even)
= [n/2].

(n = 27 + x — 1 because the complete tree down to depth H — | has 27 — 1
nodes and depth A has x nodes.)

» If x 15 odd, by an argument similar to the even case, we see that
of height-O nodes = x4+ -l v 1)/2
= 2514 x—-12
= 2 4+x-D)2
= n/2

[n/2] (because x odd = n even) .

Inductive step: Show that if 1t's true for height h — 1. 1t’s true for .

Let ny be the number of nodes at height s 1n the n-node tree T

Consider the tree T' formed by removing the leaves of T. It has ' = n — ng nodes.
We know from the base case thatmg = [n/2].so0n' = n—np =n—[n/2] = |n/2].

Note that the nodes at height 1 in T would be at height i — 1 if the leaves of the
tree were removed—that is, they are at height h — 1 in T". Letting n; _, denote the
number of nodes at height i — 1 m T", we have

2
?i'_i'| - H.PJ—]. .
By induction, we can bound ”;a_13

np=mnp_y = [n'/2"1=Tln/20 /2" = Tn/2)/2%1 = [n/2"417 . m

6.4-1
DL 6-4

6.4-2

HEAPSORT 13RI, DAA RERAE IR ()L F L 2 233847 MAX-HEAP [
6.4-3

T FFHER | A EEE A HEHEFF RIM build-heap TTEHE, LIS EIETEHE A O(n);
TP FHER R EERISITBIE Y O+ (n-1)lgn
6.4-4

Show that the worst-case running time of heapsort is Q(nlgn). This is clear since sorting has a
lower bound of Q(nlgn)

6.4-5

HAFFEEESTMER T A Olnlgn), FBESEERLTE O (nlgn).

6.5-1
P& 6-5
6.5-2

6.5-3

To support operations for a min-heap simply swap all comparisons between keys or elements of
the heap in the max-heap implementation.

6.5-4

Since the heap data structure is represented by an array and deletions are implemented by re-
ducing the size of the array there may be undefined values in the array past the end of the heap.
Therefore it is essential that the MAX-HEAP-INSERT sets the key of the inserted node to —eoo such
that HEAP-INCREASE-KEY does not fail.

6.5-5

By the following loop invariant we can prove the correctness of HEAP-INCREASE-KEY:

At the start of each iteration of the while loop of lines 4 — 6, the array A[1... heap-size[A]]
satifies the max-heap property, except that there may be one violation: A[i] may be larger than
A[PARENT(1)].

Initialization: Before the first iteration of the while the only change of the max-heap is that A[i]
is increased an may therefore violate the max-heap property.

Maintenance: Immediately before the iteration i and the child that violated the max-heap prop-
erty has been exchanged thus restoring the max-heap property between these. This can only
destroy the max-heap property between i and the parent of 1.

Termination: The termination condition of the while states that at the end of the iteration the
max-heap property between i and its parent is restored or the 1 is the root of the heap.
We see by the loop invariant that the heap property is restored at end of the iteration.

6.5-6
tRIESRESERA FILA R HEPE RV, =R PR R IRTE, AT RS

6.5-7

Algorithm 5 HEAP-DELETE(A, i)

Input: A max-heap A and integers 1.
Output: The heap A with the element a position i deleted.
Ali] & Alheap-size[A]]
heap-size[A] « heap-size[A] — 1
key «— Al
if key < A[PARENT(i)] then
MaAX-HEAPIFY(A, 1)
else
while 1 > 1 and A[PARENT(i)] < key do
Ali] & A[PARENT(1}]
i+ PARENT(1)
end while
end if

6.5-8

Given k sorted lists with a total of n elements show how to merge them in O(nlgk) time. Insert
all k elements a position 1 from each list into a heap. Use EXTRACT-MAX to obtain the first element
of the merged list. Insert element at position 2 from the list where the largest element originally
came from into the heap. Continuing in this fashion vields the desired algorithm. Clearly the
running time is O(nlgk).

7.1-1
LK 7-1
7.1-2

When all the elements in A are the same, notice that the comparison in line 4 of PARTITION is
always satified and 1 therefore is incremented in each iteration. Since initially i «— p —Tand i+ 1
is returned the returned value is r — 1.

To make PARTITION return (p + r]/2 when all elements are the same, simply modify the algo-
rithm to check for this case explicitly

7.1-3

The running time of PARTITION is @(n] since each iteration of the for loop involves a constant
number of operations and there is @(n) iterations in total.

7.1-4

To make QUICKSORT sort in nonincreasing order replace the < comparison in PARTITION line 4
with =.

7.2-1

7.2-2

If the elements in A are the same, then by exercise 7.1 — 2 the returned element from each call
to PARTITION(A, p, v} is v — 1 thus yielding the worst-case partitioning. The total running time is
easily seen to be @(n?).

7.2-3

If the elements in A are distinct and sorted in decreasing order then, as in the previous exercise,
we have worst-case partitioning. The running time is again 8(n?).

7.2-4

Elaa sk 8% AL 2T, AR A T A R TR Eh R R s A RS et A .
AR AT RE N R TG, BRI B - LR B

7.2-5

The minimum depth follows a path that always takes the smaller part of the par-
titton—1.e., that multiplies the number of elements by «. One iteration reduces
the number of elements from n to an. and 7 iterations reduces the number of ele-
ments to &'n. At a leaf, there is just one remaiming element, and so at a nummum-
depth leaf of depth m, we have o"n = 1. Thus, o™ = 1/n. Taking logs. we get
mlgae =—len,orm=—lgn/lga.

Similarly, maximum depth corresponds to always taking the larger part of the par-
titton, 1.e., keeping a fraction 1 — & of the elements each time. The maximum
depth M 1s reached when there 1s one element left, that 1s, when (1 — aMn =1
Thus, M = —1gn/lg(l —a).

All these equations are approximate because we are 1gnoring floors and ceilings.

7.2-6

7.3-1

We may be interested m the worst-case performance. but in that case, the random-
1zation 1s urelevant: it won 't improve the worst case. What randonuzation can do
15 make the chance of encountering a worst-case scenario small.

7.3-2

(1) B Quick Sort EESEIERTITEA: n T ESREH n1 501 4, B
A= pér BERAEA, BTELNe (n)
(2) SRAFF TSR RPN E S, FTELAHERE:
N (n) = 1+ 2N (n/2)
AHERFE: N =© (n)

7.4-1

7.4-2

T(n)=2+T (n/2)+ © (n)
AJLIAFE| Tin) =@ (n Jign)
AR EETTH(E L (n 1gn)
7.4-3
ai gy i, xR R
7.4-4
i, RANDOMIZED-QUICKSORT.ppt
7.4-5
DL ARG HE e et 559%:(7.4-5). pdf
7.4-6

HINE
8.1-1

RRFLE—I—_XF, SRR nEZ R AR, ERLART RS
EMERERAIN. FRinE— S RN, ¢ TEFEAd 23R W TRE
A/ AfH. AR L ARIHHZXREAEERIE logl. Bl 3 n-PMICEHSFR R
AR nl FRIH (ER o388 aff AR TR FARERFEEZDE loghnh)

8.1-2

8.1-3

If the sort runs in linear time for m input permutations, then the height i of the
portion of the decision tree consisting of the m corresponding leaves and their
ancestors 1s limear.

Use the same argument as 1 the proof of Theorem 8.1 to show that this 1s impos-
sible form =n!/2. nl/n orn!/2"

e e

We have 2" = m, which gives us i = lgm. For all the possible m’s given here.
lgm = Q(n lg?r},hence h=Qnlgn).

In particular,

n!

lgT = lgn!'—1=nlgn—nlge—1
n!

lgg = lgn!'—lgn=nlgn—nlge—1lgn
n!

lg— = lgnl—nz=nlgn—nlge—n

8.1-4

Let § be a sequence of n elements divided into n/k subsequences each of length k£
where all of the elements m any subsequence are larger than all of the elements
of a preceding subsequence and smaller than all of the elements of a succeeding
subsequence.

Claim

Any comparison-based sorting algorithm to sort s must take {2(n1gk) tume in the
worst case.

Proof Fiurst notice that. as pomted out mn the hint, we cannot prove the lower
bound by multiplying together the lower bounds for sorting each subsequence.
That would only prove that there 1s no faster algorithm that sorts the subsequences
independently. This was not what we are asked to prove: we cannot mntroduce any
extra assumptions.

Now, consider the decision tree of height & for any comparison sort for S. Since
the elements of each subsequence can be in any order, any of the k! permutations
correspond to the final sorted order of a subsequence. And, since there are n/k such
subsequences, each of which can be i any order, there are (kIE permutations
of § that could correspond to the sorting of some input order. Thus, any decision
tree for sorting § must have at least (k!y/* leaves. Since a binary tree of height &
has no more than 2" leaves, we must have 2" = (k'yY* or h = lg((K)"'*). We
therefore obtain
hoo= lg((kh"*

= (n/k)lg(k)

= (n/k)1e((k/2)"%)

= (n/2)1g(k/2).
The third line comes from k! having its k/2 largest terms being at least £/2 each.

(We implicitly assume here that I 1s even. We could adjust with floors and ceilings
if & were odd.)

Since there exists at least one path in any decision tree for sorting S that has length
atleast (n/2)lg(k/2), the worst-case running time of any comparison-based sorting
algorithm for § 1s Q(nlgk).]

8.2-1
LK 8-2
8.2-2 f18.2-3

Notice that the correctness argument in the text does not depend on the order in
which A 1s processed. The algorithm 1s correct no matter what order 1s used!

But the modified algorithm 1s not stable. As before, 1n the final for loop an element
equal to one taken from A earlier 1s placed before the earlier one (1e., at a lower
index position) in the output arrray B. The original algorithm was stable because
an element taken from A later started out with a lower index than one taken earlier.
But 1n the modified algorithm, an element taken from A later started out with a
higher index than one taken earlier.

In particular, the algorithm still places the elements with value k in positions
C[k — 1] 4 1 through C[k], but 1 the reverse order of their appearance in A

8.2-4

Given n integers from 1 to k show how to count the number of elements from a to b in O{1) time
with O(n + k) preprocessing time. As shown in COUNTING-SORT we can produce an array C such
that C[i] contains the number of elements less than or equal to i. Clearly, C[b] — Cla] gives the
desired answer.

8.3-1

LK 8-3
8.3-2

Insertion sort 1s stable. When mserting A[j] into the sorted sequence A[Ll... j—1].
we do 1t the following way: compare A[j]to A[7], starting with7 = j—1 and going
downtoi = 1. Continue at long as A[j] = A[i].

Merge sort as defined 1s stable. because when two elements compared are equal, the
tie 18 broken by taking the element from array L which keeps them 1n the original
order.

Heapsort and quicksort are not stable.

One scheme that makes a sorting algorithm stable 1s to store the index of each
element (the element’s place in the original ordering) with the element. When
comparing two elements, compare them by thewr values and break ties by their
mdices.

Additional space requirements: For n elements, their indices are 1...n. Each can
be written 1n lg n bits, so together they take O(n lg n) additional space.

Additional time requrements: The worst case 15 when all elements are equal. The
asymptotic time does not change because we add a constant amount of work to
each comparison.

8.3-3

Basis: If d = 1. there’s only one digit, so sorting on that digit sorts the array.

Inductive step: Assunung that radix sort works for d — 1 digits, we’ll show that 1t
works for d digits.

Radix sort sorts separately on each digit, starting from digit 1. Thus, radix sort of
d digits, which sorts on digits 1, ..., d 1s equivalent to radix sort of the low-order
d — 1 digits followed by a sort on digit d. By our induction hypothesis, the sort of
the low-order d — 1 digits works, so just before the sort on digit 4, the elements are
1 order according to their low-order d — 1 digats.

The sort on digit d will order the elements by their dth digit Consider two ele-
ments. @ and b, with dth digits ay and by respectively.

* Ifag = by. the sort will put @ before b, which 1s correet, since a < b regardless
of the low-order digits.

+ If a; = by, the sort will put g after b, which 1s correct. since @ = b regardless
of the low-order digits.

* If a; = by, the sort will leave g and & m the same order they were 1, because
1t 1s stable. But that order 1s already correct, since the correct order of @ and b

15 determined by the low-order d — 1 digits when their dth digits are equal, and
the elements are already sorted by their low-order d — 1 digits.

If the intermediate sort were not stable, 1t mught rearrange elements whose dth

digits were equal —elements that were m the right order after the sort on their
lower-order digits.

8.3-4

Treat the numbers as 2-digit numbers in radix n. Each digit ranges from O ton — 1.
Sort these 2-digit numbers with radix sort.

There are 2 calls to counting sort, each taking &(n 4+ n) = & (n) ume, so that the
total time 15 G (7).

8.3-5(*)

8.4-1
LI 8-4
8.4-2

The worst-case runming tume for the bucket-sort algorithm occurs when the assumyp-
tion of uniformly distributed mput does not hold. If. for example. all the input ends
up in the first bucket, then in the insertion sort phase it needs to sort all the mput,
which takes O(n?) time.

A simple change that will preserve the linear expected runmng time and make the
worst-case running time O(nlgn) 1s to use a worst-case O(nlgn)-time algorithm
like merge sort mnstead of msertion sort when sorting the buckets.

8.4-3
312, 112

8.4-4(*)
8.4-5(*)

BILE
9.1-1

Show how to find the the second smallest element of n elements using n + [lgn] —2 comparisons.
To find the smallest element construct a tournament as follows: Compare all the numbers in pairs.
Only the smallest number of each pair is potentially the smallest of all so the problem is reduced
to size [n/2]. Continuing in this fashion until there is only one left clearly solves the problem.

Exactly n — 1 comparisons are needed since the tournament can be drawn as an n-leaf binary
tree which has n — 1 internal nodes (show by induction on n). Each of these nodes correspond to
a comparison.

We can use this binary tree to also locate the second smallest number. The path from the root
to the smallest element (of height [lgn]) must contain the second smallest element. Conducting
a tournament among these uses [Ign] — 1 comparisons.

The total number of comparisons are: n — 1+ [lgn] —1=n+ [lgn] — 2.

9.1-2

TEEIR R R B MER, S1TURES F SRR EMEMENRLE. R T,
FBEApkrTaE. MBEALLE. BrRpSeESEE, SR MELE. BT TER
EMELERRECE. BRtbE—R, A SRR EE R, E SR MERE R £

9.2-1

HER 0 fEEE, RANDOMIFED-SELECT ESREE, Hohf<m 3B,

9.3-1

Consider the analysis of the algorithm for groups of k. The number of elements less than (or
greater than) the median of the medians x will be at least [$] ([3/2]1] —2) = 2 — k. Hence, in
the worst-case SELECT will be called recursively on at most n — (% — k) = 37“ + k elements. The
recurrence is

Tin) < T(n/K]) +Ti3n/4+ k) + O(n)

Solving by substitution we obtain a bound for which k the algorithm will be linear. Assume
T(n) < cn for all smaller n. We have:

Tin) ¢ [H +c (3% - k) +0(n)
Icn

n .
= ClE +1)+ T+Ck+0|_?1.1|

. 3c
€%+%+c[k+ﬂ+0[n.‘.

1 3
=cn (E+ E) +eclk+ 114+ 0(n)

£ cn

Where the last equation only holds for k = 4. Thus, we have shown that the algorithm will
compute in linear time for any group size of 4 or more. In fact, the algorithm is Q(nlgn) for
k = 3. This can be shown by example.

9.3-2
9.3-3

Quicksort can be made to run in O{nlgn| time worst-case by noticing that we can perform “perfect
partitioning™ Simply use the linear time select to find the median and perform the partitioning
around it. This clearly achieves the bound.

9.3-4

R ERIIEREES i HITE, HRALETE o mEPE I nEER TR
[RIEA 2 F

9.3-5

We assume that are given a procedure MEDIAN that takes as parameters an ar-
ray A and subarray mdices p and r, and returns the value of the median element of
Alp ..r]mn O(n) ume in the worst case.

Given MEDIAN, here is a linear-time algorithm SELECT for finding the ith small-
est element 1n A[p ..r]. This algorithm uses the determumistic PARTITION algo-
rithm that was modified to take an element to partition around as an input parame-
ter.

SELECT'(A, p.r, 1)
fp=r

then return A[p]
x < MEDIAN(A, p.1)
g < PARTITION(x)

k—g—p+1
ifi =k

then return Afg]
elseif i < &

then return SELECT (A, p.g — 1,1)
else return SELECT (A, q + 1,ri — k)

Because x 1s the median of A[p..r]. each of the subarrayvs A[p..q — 1] and
Alg + 1..r] has at most half the number of elements of A[p ..r]. The recurrence
for the worst-case running time of SELECT is T(n) < T(n/2) 4+ O(n) = O(n).

9.3-6

XA EEALA T -
¥ Ap~qlSFa R oA MNIFERES (M MEREES kDE)
{
FEHE k(v) AT E M
HE M BES DRSS Ap~1/#l Alr+l~q], #eBEImPsIMITE <=M, G
?Z:rh‘l;
¥ Ap~rFEaEk vl NEG
8 Alrtl~qRFaEE -2y hEE

9.3-7

135S 89 P Adtx, S P oy s 40, FE%
ST, (BN T ARG R et i ot £ £

200 AT T Kk)y

JRFA T AL, WwRENDTFFy, LA
R E T By ik kAN d 2 —.

s T(n)=0(n)

9.3-8

Let’s start out by supposing that the median (the lower median. since we know we
have an even number of elements) 1s in X. Let’s call the median value m, and let’s
suppose that 1it's in X[k]. Then k elements of X are less than or equal to m and
n —k elements of X are greater than or equal to m. We know that in the two arrays
combined, there must be n elements less than or equal to 71 and n elements greater
than or equal to m, and so there must be n — & elements of I that are less than or
equal tom and n — (n — k) = I elements of ¥ that are greater than or equal to m.

Thus, we can check that X[k] 1s the lower median by checking whether Y'[n —k] <
X[k] = Y[n — k4 1]. A boundary case occurs for K = n. Thenn —k = 0, and
there 1s no array entry Y'[0]; we only need to check that X[n] = Y[1].

Now, if the median 15 in X but 15 not in X[k], then the above condition will not
hold. If the median 13 in X[X'], where &' < k. then X[k] 15 above the median, and
Y[n —k + 1] = X[k]. Conversely, 1f the median 1s in X[£"], where £" = &, then
X[k] 13 below the median, and X[k] = Y[n — k]

Thus, we can use a binary search to determune whether there 1s an X[k] such that
eitherk = mand ¥Y[n—Fk] = X[k] = Y[n—k+1]ork =nand X[k] = Y[n—Fk+1];
if we find such an X[k], then 1t 13 the median. Otherwise, we know that the median
15 1n Y. and we use a binary search to find a Y[k] such that either ¥ = n and
Xn—-Fkl=Tfkl=Xn—-k+1]look=nand ¥[k] = X[n —k+ 1]; such a
Y[k] 1s the median. Since each binary search takes O(lgn) time. we spend a total
of O(lgn) time.

Here's how we write the algorithm i pseundocode:

TWO-ARRAY-MEDIAN(X.)

n < length[X] = n also equals lengrh[Y]
median <— FIND-MEDIAN(X, Y. n, 1. n)
if median = NOT-FOUND

then median < FIND-MEDIAN(Y, X_.n. 1.m)
return median

FIND-MEDIAN(A, B, n, low, high}
if low = high
then return NOT-FOUND
else & < [(low+ high)/2]
if t = n and A[n] = B[1]
then return A[n]
elseif ¥ = nand Bln — k] < Alk] = Bln —k+ 1]
then return A[k]
elseif A[k] = Bln — Kk + 1]
then return FIND-MEDIAN(A, B.n.low, k — 1)
else return FIND-MEDIAN(A, B, n, k + 1, high)

9.3-9
In order to find the optimal placement for Professor Olay's pipeline. we need only

find the median(s) of the y-coordinates of his oil wells, as the following proof
explains.

Claim
The optimal y-coordmate for Professor Olay’s east-west o1l pipeline 1s as follows:

* If n1s even, then on either the o1l well whose y-coordinate 1s the lower median
or the one whose y-coordinate 1s the upper median. or anywhere between them.

» Ifn 1s odd, then on the o1l well whose y-coordinate 1s the median.

Proof We exanune various cases. In each case, we will start out with the pipeline
at a particular y-coordinate and see what happens when we move 1t. We'll denote
by s the sum of the north-south spurs with the pipeline at the starting location,
and 5" will denote the sum after moving the pipeline.

We start with the case in which n 15 even. Let us start with the pipeline somewhere
on or between the two o1l wells whose y-coordinates are the lower and upper me-
dians. If we move the pipeline by a vertical distance d without crossing either of
the median wells, then n/2 of the wells become d farther from the pipeline and
i/2 become d closer, and so 5 =5 +dn/2 — dn/2 = s5; thus, all locations on or
between the two medians are equally good.

Now suppose that the pipeline goes through the o1l well whose y-coordinate 1s the
upper median. What happens when we increase the y-coordinate of the pipeline
by d = 0 umits, so that 1t moves above the o1l well that achieves the upper median?
All o1l wells whose y-coordinates are at or below the upper median become d umts
farther from the pipeline, and there are at least n/2 4 1 such o1l wells (the upper
median, and every well at or below the lower median). There are at most n/2 — 1
o1l wells whose y-coordinates are above the upper median, and each of these o1l
wells becomes at most d umits closer to the pipeline when 1t moves up. Thus, we
have alowerbound on s of " = s +din/2+ 1) —dn/2 - 1) =54+ 2d = 5.
We conclude that moving the pipeline up from the o1l well at the upper median
mcreases the total spur length. A symmetric argument shows that if we start with
the pipeline going through the o1l well whose y-coordinate 1s the lower median and
move 1t down. then the total spur length mcreases.

We see, therefore, that when n 1s even, an optimal placement of the pipeline 1s
anywhere on or between the two medians.

Now we consider the case when n 1s odd. We start with the pipeline going through
the o1l well whose y-coordinate 1s the median. and we consider what happens when
we move 1t up by d = 0 units. All o1l wells at or below the median become 4 units
farther from the pipeline, and there are at least (n 4 1)/2 such wells (the one at the
median and the (n — 1)/2 at or below the median. There are at most (n — 1)/2 o1l
wells above the median, and each of these becomes at most d units closer to the
pipeline. We get a lower bound on 5" of 5" = s +din + 1)/2 —din — 1)/2 =
s +d = 5. and we conclude that moving the pipeline up from the o1l well at the
median mncreases the total spur length. A symmetric argument shows that moving
the pipeline down from the median also increases the total spur length, and so the
optimal placement of the pipeline 1s on the median. m (claim)

Since we know we are looking for the median, we can use the linear-time median-
finding algorithm.

%15 =
15.1-1

PRINT-STATIONS(/, j, n)
iel
if /=0
then return
else
if(j>1) i< 4§
PRINT-STATION(/, j-1, n)

if j=n
theni& I*
print “line" i ", station" |
else i « [;[j+1]

print “line" i ", station" f

15.1-2

1. j=n 5, {#1(15.8), ri(j)=1=2 """ Al 7
2. R j=k I, (k)=
Yi=k-11M

(k1) =ra (k) + rafk) =2 "+ 2"
3. &I,

R R A

=Y. YriC) - 20,27 =22" =2 -

ﬁ?wu S I Tt e N ¥) v o g e T M % 5 ST 3 1) o L = T
0T - 1], BT R). TSk £) EmiE LB f E, EE0EEE i
foHERC T, XE, EnHREGEREB T 2ne2, miRESI AL T BBk b
HER G .

15.1-5

ERA A =2, 0 fali-1)+ty atay<hilj-1)+ay

[FEFEM, R L=, fi(-1) +taa+an < fa(j-1) +aq,

PN tope +top <O B H B, R0, BrUlr g, 154k!

15.2-1

Solve the matrix chain order for a specific problem. This can be done by computing MATRIX-
CHAIN-ORDER(p) where p = (5,10,3,12,5,50,6} or simply using the equation:

.. ifi=j

mfi,jl=<¢ . P : Ve

Ming g imfi, k] +mk + 1,50+ pi_pep;) ifl <

The resulting table is the following:

il 2131475 6

T |0 |750 | 330 | 405 | 1655 | 2010
7 0 [360 | 320 | 2430 | 1950
3 0 [180 [930 [1770
7 0 [3000 [1860
5 0 [7500
3 0

The table is computed simply by the fact that m[i,i] = 0 for all i. This information is used to
compute m[i,i+ 1] fori=1,...n —1 an so on.

BAEE: (AA)((AAL)(AsA)))

15.2-2
MATRIX-CHAIN-MULTIPLY (A, s, 1,])
if (i =)
return A[1]
if (j =1+1)
return MATRIX-MULTIPLY (A[i]. A[3])
else
Bl =MATRIX-CHAIN-MULTIPLY (A, s, 1, S[1,]]):
B2= MATRIX-CHAIN-MULTIPLY (A, s, S[1j]*+1. J):
return MATRIX-MULTIPLY (BI1. B2):
15.2-3

Bn=1K, H P (n) =1 K ¥
IRTEM BT R kan #IRKAL, BD P (k) =c2k N

n—1 n—1
P(n) = Z P(K)P(n—-k) = Z c2kean ¥ = c2(n—1)2"
k=1 k=1

R, B TATELS TN ¢ BAfFAfE— Nu=ci+1, {#13 3 n> Noltf, HP(n) = c2®

FrLh, I
15.2-4

Each time the /-loop executes, the i-loop executes n — ! + | times. Each tume the
i-loop executes, the k-loop executes j —i = [— 1 times, each time referencing
m twice. Thus the total number of times that an entry of m 1s referenced while
computing other entries is » ,_,(n — I + 1)(/ — 1)2. Thus,

T n

Y D RG.j) = i{n—i + 1)1 = 1)2
1=2

=1 j=i
n-1
= 2) (n—Dl
=1
n—1 n—1
= zznr—zzﬁ
I=1 1=1
_ jn{n — 1n B j{?i —1m(2n—-1)
2 i
s . 2P =3nt+n
= n —-n —
3
ne—n
- 3
15.2-5
FHIB A
15.3-1

Running RECURSIVE-MATRIX-CHAIN 1s asymptotically more efficient than enu-
merating all the ways of parenthesizing the product and computing the number of
multiplications for each.

Consider the treatment of subproblems by the two approaches.

* For each possible place to split the matrix chain, the enumeration approach
finds all ways to parenthesize the left half, finds all ways to parenthesize the
right half, and looks at all possible combinations of the left half with the right
half. The amount of work to look at each combination of left- and right-half
subproblem results 1s thus the product of the number of ways to do the left half
and the number of ways to do the right half.

» Foreach possible place to split the matrix chain, RECURSIVE-MATRIX-CHAIN
finds the best way to parenthesize the left half. finds the best way to parenthesize

the right half. and combines just those two results. Thus the amount of work to
combine the left- and right-half subproblem results 15 O(1).

Section 15.2 argued that the running time for enumeration is Q(£/n**). We will
show that the running time for RECURSIVE-MATRIX-CHAIN 1s Om¥y-1y

To get an upper bound on the runmng time of RECURSIVE-MATRIX-CHAIN. we'1l
use the same approach used m Section 15.2 to get a lower bound: Derive a recur-
rence of the form T(n) = ... and solve it by substitution. For the lower-bound
recurrence, the book assumed that the execution of lines 1-2 and 6—7 each take at
least unit ime. For the upper-bound recurrence. we’ll assume those pairs of lines
each take at most constant time ¢. Thus. we have the recurrence

. ifn=1,
- n—1

Tin) = o+ Z{T{H +Tin—-ky+¢c) ifn=2.
k=1

This 1s just like the book's = recurrence except that 1t has ¢ instead of 1. and so we
can be rewrite it as

n—1
Tin)<?2 ZT{:} +en.
i=1

We shall prove that T(n) = Qn3—1) using the substitution method. (Note: Any
upper bound on T (n) that is o(4"/n*/*) will suffice. You might prefer to prove one
that 1s easier to think up, such as T(n) = O(3.5").) Specifically, we shall show
that T(n) < en3"~! for all n = 1. The basis is easy, since T(l) <= ¢ =c-1 .31

Inductively, for n = 2 we have
n—1

Tin)y = 2 ZTm + cn
f=1

n—1

2 Zcz’i’af‘l + cn
i=1
 m .
c - (3 Zi?‘l -l—n)
i=1

n3n-1 .1 — 5
_ NEE ;
= ¢ (_ (3 — + G- 1}3) + H) (see below)

h 1_31.'
= crri”“—l—c-(- —|—n)

| M

I~

= end" 4 gfjﬂ +1—3M

< cend toralle=0.n>1.

Running RECURSIVE-MATRIX-CHAIN takes O(n 3"-1) time, and enumerating all
parenthesizations takes Q(4"/ 1'%} time. and so RECURSIVE-MATRIX-CHAIN is
more efficient than enumeration.

Note: The above substitution uses the fact that

rrl 1 —

EH - +{r—1}~

This equation can be derived from equation (A.5) by taking the derivative. Let

-l =1
xX) = xl=- —1.

A ; x—1
Then
f—1 n—1 il

il g _nx 1—x
;m = fix)= P + Go

15.3-2

Draw a nice recursion tree. The MERGESORT algorithm performs at most a single call to any pair
of indices of the array that is being sorted. In other words, the subproblems do not overlap and
therefore memoization will not improve the running time.

15.3-3

XA~) B E A R A R T E . P T A

KH A MRER PR FRE R T 5, REFIRARE—FE, sin LHRE ¥ W Er
S AR &5 F it T) O — A~ e AR A .

FHE S A F0o] AL AAL A PRBIES R, Hop i«

XA BT AR B Al A BN RIS SRR AS A
2 arF, MRS Adegsay BRI SRR S0 “OrE” FEE Al A BTN 8 ESE 5 240502
Ay A BT RIS S, FUOR RS AAL A H AT R e SIE S, B
LARE IR E] Adu A BRI ESE S PRESE Ada AR R -FINEdES. e
SBAERARN, MEFE. BCLEEEA P B R R BRI TE5.

15.3-4

FRATE e 3k s, j Fethigek, WIRSCANER)IE S1, -1 A0 S2, 1 BUE PRk, DLHSHE,
T PR SE— RO EE 0 B LR R, D ARAE BB IR AC R A R LR R, B LATE K AR E
T) 2o i) T R T, o0 20 T A SR A 3 I R i 1) B R AR, IR R T)
G R FRATIFE R A2 2 0) L SR R R R E RO G, s A TR M R,
{EHCRkME T 20, iR RIXA R F A b Fh Sk 18 8 n) 2 s & .

iy LA 2 A 2 R P) AL B A 3 P B R R v, B O A () 1) e A T e LU S TR A
T G 1T

15.3-5

WAL RRET R T A0S0, SR EREERE 4 ST, EEE p_pp, B0 THIE.
15.4-1

ThelCSis<1, 0, 0, 1, 1. 0>

)i 0 |1 I
Xi|o 0 0 0 |0 |0 0
1 o fo 1 1|1 1 —1
0 |0 |1 f1]2 —2| =212 —2 | =212
0|0 |1 f1]2 f2| 1213 3| «3|3
1 |lo| 11> f2]3 3 /3|4 4 —q
0 |0 |1 f213 f3| 134 f4| 145
1 (o] f1]2 f3)4 4 f413 5 f5
0 (0|1 2 3 f4| f4|35 f51 f3lo
1o 112 fala |5 f6le6 |6 f o
15.4-2
PRINT LCS(c.x.v...])
ifx[il=y0]
PRINT LCS(c.x.vi-1j-1)
print x[i]

else if c[1 —1]==c[1,}-1]
PRINT LCS(c.x.vi-1])
else PRINT LCS(c.x.v.1-1)
15.4-3

Give an efficient memoized implementation of LCS-LENGTH. This can done directly by using:

(fi=0orj=20
cli,il=qecfi—1,7-1]1+1 ifi,7 = 0 and x; = y;
max(c[i,j—1],c[t —1,j) ifi,j = 0and x; £y

Algorithm 8 LCS-LENGTH(X, Y]
Input: The two strings X and Y.
Output: The longest common substring of X and Y.
m + length[X]

n «— length[Y]
fori+— 1tomdo
forj+— 1 ton do
cli,jl &= —1
end for
end for
return LOOKUP-LENGTH(X, Y, m, n|

Algorithm 9 LooKUP-LENGTH(X, Y, 1, 1)

if c[i,1] = —1 then
return ct, i]
end if
ifi=0 orij =0 then
cli,j] &0
else
if x; = y; then
cli,j] & LooKUP-LENGTH(X,Y,i—1,j — 1)+ 1
else
cli,j] & max{LoOKUP-LENGTH[X, Y,1,j — 1}, LOOKUP-LENGTH(X, Y,1—1,j)}
end if
end if
return cli, j]

15.4-4

When computing a particular row of the ¢ table, no rows before the previous row
are needed. Thus only two rows—2-length[}] entries —need to be kept 1n memory
at a tme. (Note: Each row of ¢ actually has length[Y] + 1 entries, but we don't
need to store the column of 0's—instead we can make the program “know that
those entries are 0.) With this 1dea, we need only 2 - mun(m, n) entries if we always
call LCS-LENGTH with the shorter sequence as the I” argument.

We can thus do away with the ¢ table as follows:

Use two arrays of length mun(m, n). previous-row and current-row, to hold the
appropriate rows of c.

Initialize previous-row to all 0 and compute current-row from left to right.

* When current-row 1s filled, if there are stll more rows to compute, copy
current-row into previous-row and compute the new current-row.

Actually only a little more than one row’s worth of ¢ entries—min(m, n) + 1 en-
tries—are needed during the computation. The only entries needed in the table
when 1t 15 time to compute c[i, j] are ¢[i, k] for b = j — 1 (1.e., earlier entries mn
the current row. which will be needed to compute the next row); and e[— 1, k] for
k = j—1(ie. entries in the previous row that are still needed to compute the rest
of the current row). This 1s one entry for each & from 1 to min(m, n) except that
there are two entries with ¥ = j — 1, hence the additional entry needed besides the
one row s worth of entries.

We can thus do away with the ¢ table as follows:

» Use an arrav a of length mun(m. n) + 1 to hold the appropriate entries of c. At
the tume c[i, j] 1s to be computed, a will hold the following entries:
* alk] =c[i,k]forl =k = J — 1 (1e. earlier entries 1n the current “row),
» alk]=c[i — 1,k]fork = j — 1 (1e. entries i the previous row),

* al0] =¢[i, j — 1] (12, the previous entry computed, which couldn 't be put
into the “right” place in @ without erasing the still-needed c[i — 1, j — 1]).

» Imtiahize a to all 0 and compute the entries from left to right.

» Note that the 3 values needed to compute c[i, j] for j = 1 are m a[0] =
cli,j—1)alj—1]=c¢c[i =1,j—1].and a[j]l =¢[i — 1. j].

- When ¢[i, j] has been computed, move a[0] (¢[i, j — 1]) to its “correct”
place, a[j — 1]. and put ¢[i. j] n a[0].

15.4-5

Given a sequence X = (X1,X2,...,Xn} We wish to find the longest monotonically increasing subse-
quence. First sort the elements of X and create another sequence X'. Finding the longest common
subsequence of X and X' yields the longest monotonically increasing subsequence of X. The run-
ning time is O(n?) since sorting can be done in O(nlgn) and the call to Lcs-LENGTH is O n?).

15.4-6
#include <iostream>
using namespace std;
int find(int *a,int len,int n)/M& 250G # —4r a4k, #5IR[EME A x, W] a[x]>=n
{
int left=0,right=len,mid=(left+right)/2;
while(left<=right)

{
if(n>a[mid]) left=mid+1;
else if(n<a[mid]) right=mid-1,
else return mid;
mid=(left+right)/2;
}
return left;
}
int main()
{

int n,a[100],c[1001,ij,len;// 3§ J—7& & len, KA AABEHRAEFA G5 RS ¢ h 22k B T
E:0f > SN T
while(cin>>n)
{
for(i=0;i<n;i++)
cin>>a[i];
b[0]=1;
c[0]=-1;
c[1]=a[0];
len=1;//3bI JUAT c[1R R, BB 1 e KR 1.
for(i=1;i<n;i++)
{
j=find(c,len,a[i]);
clil=alil;
if(>len)//ZEHET len, S5 Abab 78— i B0 &4kl %0 j AT RELL len K 1
len=j;// 287 len

}

cout<<len<<endl;

}

return O;
}
15.5-1

nf g i R,
CONSTRUCT-OPTIAML-BST(root, i, j)

if(i==1&&j==n)
print root[i, j] is the root
if (i<j)

print root[i, root[i,j]-1] is the left child of K.ee
CONSTRUCT-OPTIAML-BST(root, i, root([i, j]-1)
print root[root[i,j]+1, j] is the right child of K ooy
CONSTRUCT-OPTIAML-BST(root, roctli, j], j)

if(i==j)

print di_y is the left child of K;

print d, is the right child of K,
if(i=)

print d, is the right child of K,

15.5-2

AR TR
15.5-3

O (%)

7, (15.17) RBHEME(EE Om). FTEEE OPTIMAL-BST, R4 wliilf 15.17

AR, EREAERN Wi TRTS 0 TR, BEULEARE, BfE
BRENEN O™ Oy (O(n+O(m)=0(n?).

15.5-4
ST Ry
it i
<
else for r<-root[ij-1] to root[i+1,j]

%16 =

16.1-1

2 AR][R

52 2 1% O, 700 ELIEI] 2 441 O(n)

o | it s, =1
A=\ mazsepeileli b+ clkej] +1} i S5 # 10

[J‘!'N.‘kli[('_"if‘T]TIT'l‘."::-ELF{‘TDH[_ S
1 mitialize n‘l.‘” =1

2 forv— 1 tomn
3 do tor) — 2 ton
] doif s =y
5 then efi, j| « ¥
6 else for b — i+ 1to -1
7 do if efu. j| < et k| + |k, j| + 1
N then cfi. j| — eli, k] + |k, j]
9 sl g — k
16.1-2
kA TR R RS) B S, 1% am 42 Sij FP R R AR I) A Sh

sm=max{Sk, ak&S5ij}
W2, 1) 550 am TE Sj BIRE B HZE 708 30 b e F
2) FRE Smj A4E, BTLAEEE am $548 1) B Sim A ME-— 0] fidE 25 (1)) B

BHAg, UFRE 2). 1% Sm dEES, WHESD ac e

Sm<fe=5,<fi<=5,

ak FIHBTE Si of, B RHH am TEHEE A5 0], X5 am B EAH IS, BT LAHEH Smi B 28
WIS, WM 1. i Au b S BIECRARE SN, BKS Anj AP RS B A IR) 2R U 1
Fr, X ak b A BIERIG—EE0, AR ak=am, MEBLE. MR ax#an, N 7E
A" i5=Ai i {ak)l U {aw), IRTE Al P ak BRERE—Ni%E0, M swo=sk, AT LL A" 15 P OIGGED R
AR, M A 5 A o PEShETHARR, Hek A 5 RAE an B Sij B XGRS TS EIHY

= P

= e

16.1-3

Find the smallest number of lecture halls to schedule a set of activities 5 in. To do this efficiently
move through the activities according to starting and finishing times. Maintain two lists of lecture
halls: Halls that are busy at time t and halls that are free at time t. When t is the starting time
for some activity schedule this activity to a free lecture hall and move the hall to the busy list.
Similarly, move the hall to the free list when the activity stops. Initially start with zero halls. If
there are no halls in the free list create a new hall.

The above algorithm uses the fewest number of halls possible: Assume the algorithm used m
halls. Consider some activity a that was the first scheduled activity in lecture hall m. i was put in
the mth hall because all of the m — 1 halls were busy, that is, at the time a is scheduled there are
m activities occuring simultaneously Any algorithm must therefore use at least m halls, and the
algorithm is thus optimal.

The algorithm can be implemented by sorting the activities. At each start or finish time we can
schedule the activities and move the halls between the lists in constant time. The total time is thus
dominated by sorting and is therefore @(nlgn].

16.1-4

Show that selecting the activity with the least duration or with minimun overlap or earliest starting
time does not yield an optimal solution for the activity-selection problem. Consider figure 4

I | | | | |
| |
- s
— —— —
(b)
1)
(c)

Figure 4: Three examples with other greedy strategies that go wrong

Selecting the activity with the least duration from example a will result in selecting the topmost
activity and none other. Clearly, this is worse than the optimal solution obtained by selecting the
two activities in the second row.

The activity with the minimun overlap in example b is the middle activity in the top row
However, selecting this activity eliminates the possibility of selecting the optimal solution depicted
in the second row:.

Selecting the activity with the earliest starting time in example ¢ will yield only the one activity
in the top row.

16.2-1
=B g,

M A E R, LAREYS i S0, MA—EEEESEAEE, 1cizn. I
()8 ATLAENA A 25 TF C=0, wi=0,vi=0, 12iEn BRI —" n o 0-1 M2zl %2, =n)x 0=
=1, 1=i=n,EETH =0, MBI = ARITEA.

GatWsrin el

& v wizvikl S wikl s 1=iEn- 1 WFFEE B EE— &R (x1,x2,), 515 21 =min
(Wiwl 1l

=SBRSBI A - LI T

(1) Twi=W , WHM—MSAEN (xlxd, ml.

(2) TwisW , Bwi/wi=vl/wl, 2<isn , MEME—BERAEAER
(3) Twi=W , 3= (zlx2. =) 38EF(z2 mESF =z,

FI L, s EET . m) sEENEN—#E B =z ABT 3. IR IES
B Si=2U{ =1y -{ =), M 21 WESCIEENR N SRR
16.2-2

The 0/1 knapsack problem exibits the optimal substructure given in the book: Let i be the highest
numbered item among 1,...,n items in an optimal solution § for W with value v(S). Then 5§’ =
S —{i} is an optimal solution for W — w; with value v(5') = v(5) — v;.
We can express this in the following recursion. Let c[i, w| denote the value of the solution for
items 1,...,1 and maximum weight w.
0 ifi=0orw=20
cli,w] = ¢cfi—1,w ifwyg = w

max(v; +cfi— 1T, w—wi],cfi—1,w]} ifi=0andw zwy

Notice that the last case determines whether or not the ith element should be included in an

optimal solution. We can use this recursion to create a straight forward dynamic programming
algorithm:

Algorithm 10 DyNaMIC-0-1-ENAPSACK (v, w,n, W)
Input: Two sequences v = (vy,...,vn} and w = {wy,..., Wy} the number of items n and the
maximum weight W.

Output: The optimal value of the knapsack.
for w+— 0 to W do
c[0,w] 0
end for
fori+— 1tondo
c[i, 0] « 0
for w1 to W do
if wi < w then
ifvi +ci—1,w—wi] = cli—1,w| then
cli,w] &= vi +c[i—1,w—wi]
else
c[i,w] &—c[i—1,w]
end if
else
cli,w] —c[i—1,w]
end if
end for
end for
return c[n, W]

For the analysis notice that there are (n + 1) - (W 4+ 1) = @{nW) entries in the table c each
taking @(1) to fill out. The total running time is thus @(nW).

16.2-3
I () A A A SR C=0, =0,y =0, 1= i=in
Haraad w, v it Tl R A w=w, v=y, 1=i=n- 1%

i+ 1 'y

RE—T nmA & (x, x, . x), x,€ (0,1}, 1= i=n @15

S G HE v ERk L 0L SRR .

It [A P L 3 e e) o e A R H R
e

int Partion| int w, int |, int 1)
1 it i
i=1 j=r
int temp = w| i] ;
dof
while{ (w[j] = =temp) &&(i<j)) j--:
ifil i=j) wli++] =wljl;
while({ w[i] = =temp) &&(i<j)) i++:
iffi=j) wlj- -1 =wli]:
Powhile(i =j):
wl i] = temp;

ret i;
}
void QuickSert(int” w, int 1, int 1)
1 inti;
ifi =1
i =Pardon{ w.1.1) ;
CruickSort| w, 1,i- 1) ;
OuickSord w, i+ 1, 1) ;
1
1

void Loading (int” x, int’ w, int ¢, int n)
{ int’ t=newint [m+1];
QuickSort w, t. n) ©

forfinti=1:i< =nli++)

x i] =0
forfinti=1;1< =n&&w[t][i]] = =c;i++)
T x[t[i]] =1
c- =wlt[i]]:
1

i
B BT (A B 2R O O nloge 1) -

16.2-4

The optimal strategy 15 the obvious greedy one. Starting will a full tank of gas,
Professor Midas should go to the farthest gas station he can get to within n mules
of Newark. Fill up there. Then go to the farthest gas station he can get to within n
mules of where he filled up. and fill up there. and so on.

Looked at another way, at each gas station, Professor Midas should check whether
he can make 1t to the next gas station without stopping at this one. If he can. skip
this one. If he cannot, then fill up. Professor Midas doesn't need to know how
much gas he has or how far the next station 1s to umplement this approach, since at
each fillup, he can determune which 1s the next station at which he 1l nead to stop.

This problem has optimal substructure. Suppose there are m possible gas stations.
Consider an optumal solution with s stations and whose first stop 1s at the kth gas
staon. Then the rest of the optumal solution must be an optumal solution to the
subproblem of the remamming m — k stations. Otherwise, if there were a better
solution to the subproblem, 1.e., one with fewer than s — 1 stops, we could use 1t to
come up with a solution with fewer than s stops for the full problem, contradicting
our supposition of optimality.

This problem also has the greedy-choice property. Suppose there are I gas stations
beyond the start that are within n nules of the start. The greedy solution chooses
the kth station as its first stop. No station beyond the kth works as a first stop.
since Professor Midas runs out of gas first. If a solution chooses a station j < k as

its first stop, then Professor Midas could choose the kth station mnstead, having at
least as much gas when he leaves the kth station as if he'd chosen the jth station.
Therefore, he would get at least as far without filling up agam 1f he had chosen the
kth station.

If there are m gas stations on the map, Midas needs to inspect each one just once.
The running time 1s O(m).

16.2-5

Describe an algorithm to find the smallest unit-length set, that contains all of the points {x1,.. . xn}
on the real line. Consider the following very simple algorithm: Sort the points obtaining a new
array {us,.. .Y, . The first interval is given by [y;,y; + 1]. If y; is the lefimost point not contained
in any existing interval the next interval is [yi,yi + 1] and so on.

This greedy algorithm does the job since the rightmost element of the set must be contained in
an interval and we can do no better than the interval [y1,y1 + 1]. Additionally, any subproblem to
the optimal solution must be optimal. This is easily seen by considering the problem for the points
greater than yy + 1 and arguing inductively.

16.2-6

Use a linear-time median algorithm to calculate the median m of the y/w; ra-
tios. Next, partition the items into three sets: G = {i v /w; =m}, E =
li-w/wy=m}, and L = {i : v;/w; = m}; this step takes linear time. Compute
We = ZreG w; and Wg = 3. _ - wy. the total weight of the items in sets G and E.
respectively.

+ If Wg = W. then do not yet take any items in set &, and 1nstead recurse on the
set of 1tems & and knapsack capacity W.

* Otherwise (Wz = W), take all items in set &, and take as much of the items in
set E as will fit in the remaming capacity W — Ws.

+ If Weg + Wg = W (1e.. there 15 no capacity left after talung all the items in
set G and all the 1tems 1n set E that fit in the remaimng capacity W — W), then
we are done.

* Otherwise (Wg + Wz = W), then after taking all the items in sets & and E.
recurse on the set of items L and knapsack capacity W — Wy — Wg.

To analyze this algorithm, note that each recursive call takes linear time, exclusive
of the time for a recursive call that 1t may make. When there 1s a recursive call, there
15 Just one, and 1t’s for a problem of at most half the size. Thus, the running time 1s
given by the recurrence T(n) = T(n/2) + ®O(n). whose solution 1s T(n) = O(n).

16.2-7

Sort A and B nto monotonically decreasing order.

Here's a proof that this method yields an optimal solution. Consider any mdices i
and j such that 7 = j. and consider the terms B and a; ¥ We want to show that
1t 15 no worse to iclude these terms m the payoff than to include g" and a J,-E’-'__ 1.e..
that a;,"a;% = a;%a;". Since A and B are sorted into monotonically decreasing
order and i < j, we have @ = a; and b; = b;. Since a; and a; are positive
and b; — b; is nonnegative, we have ,”~% = a;%~%/_ Multiplying both sides by

a;%ia;? yields a;"a;% = a,%ia;”.

Since the order of multiplication doesn't matter, sorting A and B into monotom-
cally mereasing order works as well.

16.3-1
EAE| FRAEERDD. SONEERINSEHE—MER. TEEm .

16.3-2

a:1111111
b:1111110
c:111110
d:11110
e:1110
f:110

g:10

h:0

I T] ROG S n] HE S P A Tk B
FATAHFEUEN: SRR n=1, B4 F A FHOL:

(1) foi+ D<) F0) < fln+2)
i=1

(2) Z f(1) = f(n +2) — 1

i=1

REXPIGEWH—ARER, FA R LY.

B SR RgyEE . A n=1 III TR f(2)<f(1) <f(3)

i, 2 n=k({k=1), (1) R r, Bl

Fle+ D <) £ < fle+2) i, HA%n=k+1H
i=1

flk+2)=f)+flk+ 1)< flk+1)+ flk+1)

k
EZf(i) k4D < fk+2)+ Flk+1) = f(k+3)

i, fEiFT
k+1

flet2)< > f0) <flk+3)
=1

ALk, 43Ik !

16.3-3
16.3-4

SHEEHER A £ = De= fie= >=f{)e= >=fn)

FixHEi S E T REREAE, SFEMRECESAR 1D, (2, 1)

MR B2 ST AR 2 T=0 1M I+ +R DD+ +EDM(.+ T) *tn)

st FEA 1 < WHE wh=t). BAEIESE LHFEH0E j-FRNERALEES
& BT DM+ <KD*O+ED) - R R B HERERELLEREE, 2
SEF®MAEFRETEFE.

FlA bt Bs A Al RE Rz, @il

16.3-5

HI2n-107 R n i ghte, Walgh s H1E s, s m

O 1. 1]102(11) (SRS R 7| M g e b e vl
[y leog(n) ol T Hinlog(n) 7 .

16.3-6
TISUAE) BRI S5 nifT = A7 &, IR RE] 512 16.3 FUUER .
16.3-7

BT B Huffinan #-2 —Bim _ ¥4, REEKERD 3.
16.3-8

Show that we cannot expect to compress a file of randomly chosen bits. Notice that the number
of possible source files S using n bits and compressed files E using n bits is 2"*' — 1. Since any
compression algorithm must assign each element s £ S to a distinct element e £ E the algorithm
cannot hope to actually compress the source file.

04 =

24.1-1
IR s HISA T RE, P 24-4
24.1-2

AT Beliman-Ford EiESizFtaaiEz= . 78-Sy e 17, EFE MR : 2l v HIRE
PSR M THE dv|E2 HEiA RS rR RS e, FrART8—1 sy e V7, EM s Bl

v R —aines, = HNSREERSLER, Bdlv]<w
24.1-3

The proof of the convergence property shows that for every vertex v. the shortest-
path estimate d[v] has attained 1ts final value after length (any shortest-weight path
to v) iterations of BELLMAN-FORD. Thus after m passes, BELLMAN-FORD can
termunate. We don't know m 1n advance, so we can't make the algorithm loop
exactly m times and then termuinate. But if we just make the algorithm stop when
nothing changes any more, 1t will stop after m + 1 iterations (1.e., after one iteration
that makes no changes).

BELLMAN-FORD-(M+1)(G, w, 5)
INITIALIZE-SINGLE-SOURCE(G, 5)
changes <— TRUE
while changes = TRUE
do changes < FALSE
for each edge (1, v) € E[G]
do EELAX-M(u, v, w)

RELAXN -Miu, v, w)
if d[v] = d[u] + wiu, v)
then d[v] < d[u] + wiu, v)
Tlv] < u
changes < TRUE

The test for a negative-weight cycle (based on there being a d that would change
if another relaxation step was done) has been removed above, because this version
of the algorithm will never get out of the while loop unless all d’s stop changing.

24.1-4
24.1-5*

24.1-6

B4 Bellman-Ford %%, SEdREIMIA ER—A 8, FHAKKEREI IR BB —AN90 8, FRAK
€ EUiEZ NI (ERT P

24.2-1

UL 24-5

24.2-2

B Ja — IRAN GG &5

24.2-3

We'll give two ways to transform a PERT chart G = (V, E) with weights on
vertices to a PERT chart G' = (V', E') with weights on edges. In each way, we’ll
have that |V'| = 2|V| and |E'| = |V| + |E|. We can then run on G’ the same

algorithm to find a longest path through a dag as 15 given in Section 24 2 of the
text.

In the first way, we transform each vertex v € V imnto two vertices ¢ and v" m V"
All edges m E that enter v will enter v i1 E’, and all edges in E that leave v will
leave v” in E'. In other words, if (1, v) € E, then (1", v") € E'. All such edges
have weight 0. We also put edges (v/, v") mnto E' for all vertices v € V. and these
edges are piven the weight of the corresponding vertex v in G. Thus, |V'| = 2|V,
|E’| = |V| + | E|, and the edge weight of each path in &' equals the vertex weight
of the corresponding path in G.

In the second way, we leave vertices in V alone, but we add one new source vertex s
to V'.sothat V' = V U {s}. All edges of F are in F'. and E' also includes an
edge (5, v) for every vertex v € V that has in-degree 0 in &. Thus. the only vertex
with m-degree 0 in G 1s the new source s. The weight of edge (u, v) € E 1s the
weight of vertex v in G. In other words, the weight of each entering edge in G 1s
the weight of the vertex it enters in G. In effect, we have “pushed back™ the weight
of each vertex onto the edges that enter 1t. Here |V'| = |V| 4+ 1. |E'| = |V| + |E]
(since no more than | V| vertices have in-degree 0 in). and again the edge weight
of each path in G’ equals the vertex weight of the corresponding path in G.

24.2-4

We count the number of directed paths in a directed acyclic graph G = (V,E] as follows. First
perform a topological sort of the input. Then for all v € V compute, B{v) defined as follows.

) 1 v is last in the order
B(v) =

143, wce Blw] otherwise

B(v]) computes the number of directed paths beginning at v since if v is last in the order the only

path starting at v is the empty one. Otherwise for each node w, (v,w)] £ E, [v,w] concatenated

with the paths from w and the empty path are the paths starting from v. We then compute the
number of directed paths after v in the topological order. We denote this by D(v] and we obtain
the following.

D(v) = Bfv) + Z D(w)

[v,w]eE

Since the nodes of G are ordered topologically B(v) and Div) can be computed in linear. Thus
the total running time is O(E + V).

24.3-1
UL 24-6
24.3-2

Dijestra BiEEREHEE: Sl B— I EEREN=. ENMS5ERAIHSHEE. ST
B AER . AT ASFE—EEEE ST BTl =, A& R E R it 2
B, EmfRil 7 EERA LY. MNIREREE, B Dikstra REEEHAEARE
. B BRIl P~ B MR e, B el O =g
=R .

24.3-3

Consider stopping Dijkstra’s algorithm just before extracting the last vertex v from the priority-
queue. The shortest path estimate of this vertex must the shortest path since all edges going into v
must have been relaxed. Additionally, v was to be extracted last so it will have the largest shortest
path of all vertices and any relaxation from v will therefore not alter shortest path estimates.
Therefore the modified algorithm is correct.

24.3-4
Consider to problem of computing the most reliable channel between two vertices. Observe that
this is equivalent to a shortest path problem on the graph with w(e] =l1g(r(e}) for all ¢ £ E which
can be solved using Dijkstra’s algorithm. The reliability of the most reliable path to any node v

can then be found as 240,
24.3-5

24.3-6

Consider running Dijkstra’s algorithm on a graph, where the weight functionisw:E —= {1,...W—
1}. To solve this efficiently, implement the priority queue by an array A of length WV + 1. Any
node with shortests path estimate d is kept in a linked list at A[d]. A[WV + 1] contains the nodes
with oo as estimate.

EXTRACT-MIN is implemented by searching from the previous minimun shortest path estimate
until a new is found. DECREASE-KEY simply moves vertices in the array. The EXTRACT-MIN oper-
ations takes a total of O{VW] and the DECREASE-KEY operations take O(E) time in total. Hence
the running time of the modified algorithm will be O{VW +E].

24.3-7

Consider the problem from the above exercise. Notice that every time a node v is extracted by
EXTRACT-MIN the relaxations performed on the neighbour of v gives shortests path estimates in the
range {d[v],...d[v] + W —1]. Hence after every EXTRACT-MIN operation only W distinct shortest
path estimates are in the priority queue at any time.

Converting the array implementation to a binary heap of the previous exercise must give a
running time of O(V + E)lgW) since both the EXTRACT-MIN operation and the DECREASE-KEY
operation take O{lg W) time. If we use a fibonnacci heap the running time can be further improved

to O(VIgW +E).
24.3-8
ARG OL N AN IR 28 BB K s B

24.4****
24.5****

05 =
25.1-1
LK 25-1
25.1-2
AT ARUEE I A 25.2 1IERfTE
25.1-3

The matrix LY corresponds to the identity matrix

100 -0
010 -0
001 0

\ 000 ... 1 }
of regular matrix multiphcation. Substitute O (the 1dentity for +) for o0 (the 1den-
tity for min), and 1 (the identity for -) for O (the identity for 4.

I =

25.1-4
25.1-5

The all-pairs shortest-paths algorithm in Section 25.1 computes
L[J'.'—lll — H"m_l — LI:D:I . H_r:l‘:—l

where FJ-[:"_“ = 8(i, j) and L'? 1s the identity matrix. That is, the entry in the
ith row and jth column of the matrix “product” is the shortest-path distance from
vertex i to vertex j, and row 7 of the product 1s the solution to the single-source
shortest-paths problem for vertex 1.

Notice that in a matrix “product” € = A - B, the ith row of C 1s the ith row of A
“multiplied” by B. Since all we want 1s the ith row of C, we never need more than

the ith row of A.
- - - - 0 T —

Thus the solution to the single-source shortest-paths from vertex 7 1s I; Lot

where L is the ith row of L©

entries are 00,

—a vector whose ith entry 1s 0 and whose other

Doing the above “multiplications”™ starting from the left 1s essentially the same
as the BELLMAN-FORD algorithm. The vector corresponds to the d values in
BELLMAN-FORD —the shortest-path estimates from the source to each vertex.

* The vector 1s imtially 0 for the source and o0 for all other vertices, the same as
the values set up for d by INITIALIZE-SINGLE-SOURCE.

By overriding previous matrices we can reduce the space used by FASTER-ALL-PAIRS-SHORTEST-
PATH to @(n?).

25.1-9

The presence of a negative-weight cycle can be determined by looking at the diagonal of the
matrix '™~ computed by an all-pairs shortest-path algorithm. If the diagonal contains any
negative number there must be a negative-weight cycle.

25.1-10

As in the previous exercise when can determine the presence of a negative-weight cycle by looking
for a negative number in the diagonal. If L'™/ is the first time for which this occurs then clearly
the negative-weight cycle has length m. We can either use SLOW-ALL-PAIRS-SHORTEST-PATH in
the straightforward manner or perform a binary search for m using FASTER-ALL-PAIRS-SHORTEST-
PATH.

25.2-1
LK 25-4

25.2-4

With the superscripts, the computation is d,-(f} < min {d,ak_l}. dy "V + déf_lj}_ If.

having dropped the superscripts, we were to compute and store d; or dy; before

using these values to compute d;, we might be computing one of the following:

K : k—1) ik k-1
a’,-Er-j < min {d;.% dyY + a’éj)

3 - k—1) k-1 k
a‘,-Er-:' < min {d;.g,- Ldg Tt + déj:')

3 : k=1) ik X
d,-Er-j «— min {d;.fii dE + d,gjj}
In any of these scenarios, we re computing the weight of a shortest path from i to j
with all intermediate vertices 1n {1, 2, ..., k}. If we use df;j._ rather than df(: _1:',
m the computation, then we re nsing a subpath from 7 to £ with all intermediate
vertices 1n {1, 2, ..., k}. But k cannot be an intermediate vertex on a shortest path
from 7 to k, since otherwise there would be a cycle on this shortest path. Thus,
drﬁfj = d}: ~U_ A similar argument applies to show that dgj = dg_l). Hence, we
can drop the superscripts i the computation.

25.2-6

Here are two wayvs to detect negative-weight cyeles:

. Check the main-diagonal entries of the result matnx for a negative value. There
1s a negative weight cycle 1if and only 1f c;(?-":' < 0 for some vertex i:

. d;-'(:} 1s a path weight from i to itself; so 1f 1t 15 negative, there 1s a path from i

to itself (1.e., a cycle), with negative weight.

+ If there 1s a negative-weight cycle, consider the one with the fewest vertices.

In fact, 1t suffices to check whether clf

» Ifit has just one vertex, then some uy; < 0. so dj; starts out negative, and

since d values are never increased, 1t 1s also negative when the algorithm
terminates.

If 1t has at least two vertices, let & be the highest-numbered vertex in the
cyele, and let i be some other vertex in the cycle. q{f ~ and déf_” have
correct shortest-path weights, because they are not based on negative-
weight cycles. (Neither df:_ Y nor d}éf“ Y can include k as an intermediate
vertex, and { and k are on the negative-weight cycle with the fewest
vertices.) Since i ~+ Kk ~+ I 15 a negative-weight cycle, the sum of
those two weights 1s negative, so d;.-(?-k:' will be set to a negative value.
Since d values are never increased. 1t 1s also negative when the algorithm
terminates.

n-1)

: = 0 for some vertex 1. Here's why.

A negative-weight cycle contaimn% vertex i either contains vertex n or 1t does
not. If it does not, then clearly dr.(?."") < 0. Ifthe negative-weight cycle contains
vertex n. then consider d"—1 . This value must be negative, smce the cycle,

nn

starting and ending at vertex n. does not include vertex n as an intermediate

vertex.
Alternatively, one could just run the normal FLOYD-WARSHALL algorithm one

[

extra iteration to see if any of the d values change. If there are negative cycles,
then some shortest-path cost will be cheaper. If there are no such cycles, then
no d values will change because the algorithm gives the correct shortest paths.

25.2-8

We wish to compute the transitive closure of a directed graph G = (V| E}. Construct a new graph
G* = [V,E*) where E* is initially empty. For each vertex v traverse the graph G adding edges for
every node encountered in E*. This takes O(VE) time.

25.3-1
25.3-2

25.3-3

h(v)=0. h(u)=0, w=w+h(u)-h(v)=w

25.3-4

2535
A0, o, v) «— o(u,v)+ h(u) —h(v)
so(,v) o, v)+--+ oy, ,v,)+ oW, v)+o(v,u)=0
Y z0, WXIHRE 251040 o(u,v)=0

25.3-6

